

Vytvořeno v rámci projektu Rozvoj kvality vzdělávání, hodnocení a strategického řízení na Univerzitě Pardubice, reg. č. CZ.02.2.69/0.0/0.0/16_015/0002320

The theory of the Residuals

The Laurent Series (LS)

Let Ω is the inter-circular region with the center in the point z_0 . If the complex function f(z) is the holomorphic in the region Ω , subsequently for each $z \in \Omega$ is possible to express the function f(z) using the Laurent series: $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$,

Where the constants a_n are given using the formulas: $a_n=\frac{1}{2\pi i}\int_{\Gamma}\frac{f(z)}{(z-z_0)^{n+1}}dz$ and Γ is any circle laying in the inter-circular region Ω .

- The part $\sum_{n=-\infty}^{-1} a_n (z-z_0)^n$ is called the main part of the LS
- The Taylor Series is the specific case of the LS (main part is equal to 0)
- For the expansion of the rational complex function in LS we use the formula for the sum of the geometric series (it is simplify the curve integral)
 - the geometric series: a sequence $\{a_n\}_{n=1}^\infty=\{a_0q^n\}_{n=0}^\infty$ is called the geometric sequence. If $|q|\geq 1$ GS is the divergent, if |q|<1 GS is convergent and $\sum_{n=0}^\infty a_0q^n=\frac{a_0}{1-q}$.

The singular points of the complex function, The Residual theorem

Lets the complex function f(z) is holomorphic in a certain surrounding of the point z_0 with the the exception of the point z_0 . Then z_0 is called the *singular point* of the function f(z).

The classification of the singular points:

- Removable singularity
 - \circ The main part of the LS in the point z_0 is equal to 0
 - $\circ \lim_{z \to z_0} f(z) = a_0 \text{ is finity}$
- Significant singularity
 - \circ The main part of the LS in the point z_0 consists from the infinity nonzero members
 - $\circ \quad \lim_{z \to z_0} f(z) \text{ does not exists}$
- The m-th order pole
 - \circ The main part of the LS in the point z_0 consists from the finity nonzero members
 - $\circ \quad \text{for } a_n = 0 \text{ and for } n < -m; a_{-m} \neq 0 \text{ is true that } \lim_{z \to z_0} f(z) = \infty$

- For determining the order of the pole we use the limit $\lim_{z\to z_0}(z-z_0)f(z)=a_{-m}$, which always have to be finite and nonzero.
- The coefficient a_{-1} of the LS of the functions f(z) in the point z_0 is called the reziduum of the function f(z) in the point z_0 . We note $a_{-1} = \mathop{\rm res}_{z=z_0} f(z)$
- The formula for the calculation of the residuum for the 1-st order pole is $\mathop{\rm res}_{z=z_0} f(z) = \lim_{z\to z_0} (z-z_0)\cdot f(z)$
- The formula for the calculation of the residuum for the m-th order pole is

$$\operatorname{res}_{z=z_0} f(z) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m \cdot f(z)]$$

• Lets $f(z) = \frac{\varphi(z)}{\psi(z)}$, where the functions $\varphi(z)$ and $\psi(z)$ are the holomorphic in the point z_0 , $\varphi(z_0) \neq 0$, $\psi(z_0) = 0$, $\psi'(z_0) \neq 0$, then the function f(z) has in the point z_0 the 1-st order pole and $\underset{z=z_0}{\operatorname{res}} f(z) = \frac{\varphi(z_0)}{\psi'(z_0)}$.

The residual theorem

Let's the complex function f(z) holomorphic inside and at the simply closed and positive oriented curve Γ with exeption the poles z_1, z_2, \dots, z_n . Inside the curve Γ is:

$$\int_{\Gamma} f(z)dz = 2\pi i \cdot \sum_{k=1}^{n} \underset{z=z_k}{\text{res }} f(z).$$

So we only add the residuals in the poles inside the curve Γ .